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AbIInc:t-Plane wave propagation in the direction normal to the layering of a periodically layered medium
is studied. Aperiod consists of two layers of homogeneous, isotropic, linear elastic or viscoelastic materials.
The layered medium is of finite extent and hence consists of a finite number of layers. Atheory is presented
by which the layered medium is replaced by an "equivalent" linear homogeneous viscoelastic material such
that the stress or the velocity in the latter and in the layered medium are identical at the centers of the
alternate layers. Transient waves in the layered medium are then obtained by solving the transient waves in
the "equivalent" homogeneous viscoelastic medium. Solutions at points other than the centers of the
alternate layers are also presented. Numerical examples are given for transient waves in an elastic layered
medium due to a step load applied at one of the boundary while the other boundary is fixed. Comparisons
with the exact solutions by the ray theory show that the present theory can predict very salisfactorily
transient waves in a finite layered medium.

I. INTRODUCTION
Most of the approximate theories for wave propagation in a layered medium focus on the
determination of the dispersion relation or the frequency equation due to a harmonic
oscillation[1-4], although some of the theories are able to predict the late-time asymptotic
solution in a semi-infinite layered medium due to a step load applied at the boundary. For the
latter, exact· theories may be used to find the asymptotic solution and the wave-front
solution [S-7],

To predict the transient response at points not necessarily far away from the impact end
(where the asymptotic solution does not apply) and to points not necessarily near the
wave-front, a new theory based on the analogy between the dynamic response of a semi-infinite
layered medium and a semi-infinite homogeneous viscoelastic medium has been proposed
recently by Ting and Mukunoki [8]. The fundamental idea is to characterize the layered medium
by an "equivalent" homogeneous viscoelastic medium such that the dynamic response of the
latter is identical to that of the layered medium at the centers of the alternate layers. Although
the idea of modeling a composite by a viscoelastic medium is not new[9, 10], the "theory of
viscoelastic analogy" introduced in [8] succeeds in correlating precisely the analogy between a
layered medium and a homogeneous viscoelastic medium. Since wave propagation in a
homogeneous' linear viscoelastic medium can be solved easily by many known numerical
schemes (see e.g. [II]), one can obtain the transient wave solution in a layered medium by
solving the transient waves in the "equivalent" homogeneous viscoelastic medium.

The layered medium considered in [8] is of semi-infinite extent. In this paper we extend the
theory to the case of a finite layered medium. First, we derive the general solution in the form
of Laplace transform for waves propagating normal to the layerings of a finite layered medium.
The general solution, which is applicable to any point in the finite layered medium, contains two
arbitrary coefficients which can be determined from the boundary conditions of the finite
layered medium. Next, we apply the general solution to certain points in the layered medium,
namely, the centers of each layer. We show that the general solution at the centers of each
layer is analogous to the general solution for waves propagating in a homogeneous viscoelastic
medium. From this analogy we obtain the viscoelastic relaxation function of the "equivalent"
homogeneous viscoelastic medium, Several analogies can be made depending on whether one is
interested in the stress response or the velocity response in the layered medium. The analogies
obtained here are more general than that presented in [8] and can be applied to the semi-infinite
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medium as well. In finding a means for determining the response at points other than the
centers of the layers, we inadvertently obtain a characteristic relation in an integral form for
one-dimensional waves in homogeneous viscoelastic media.

2. BASIC EQUATIONS

Consider a periodic layered medium as shown in Fig. 1 in which each period 2eu consists of
two layers of homogeneous, isotropic, linear elastic or viscoelastic materials. The two different
materials in the layers will be designated as material 1 and 2, respectively. Thus material 1
occupies layers 1,3,5, ... while material 2 occupies layers 2,4,6, .... The thicknesses of
individual layers are denoted by 2hl (i =1,2) where the subscripts 1 and 2 refer to material 1
and 2, respectively. We will assume that the layered medium is initially at rest and occupies the
region 0s x s I. We choose the central surface of layer 1as x : 0 and the other boundary, x =I,
is assumed to be at the central surface of layer N where N can be an even or odd integer.
Hence, .

1= (N -I)eu. (I)

We will consider plane wave propagation in the direction x in which the only non-vanishing
component of the displacement is in the x direction. We therefore have a one-dimensional wave
propagation problem in which the equation of motion and the continuity of the displacement are
given by

~~ =PIVI, (i =1,2) (2)

~~ =f/, (i =1,2) (3)

where a dot stands for differentiation with respect to the time I, and 0'/, fl' VI, Pi (i =1, 2) are the
normal stress, normal strain, particle velocity and mass density, respectively. Let AI(I) and IJ./(I)
be the relaxation functions of the materials. For elastic materials, A;(t) and IJ./(I) are in­
dependent of I and are identified as Lam6 constants. The stress-strain relation can be written in
the form of Stieltjes convolution

O'/(x, I) : l' g/(I - 1') dE/ex, I'), (4)
0-

g/(I) =A/(I) +21J./(1), (5)

where we have assumed that

(6)

3. GENERAL SOLUTIONS

The general solution to eqns (2)-(6) can be obtained by the method of Laplace transform and by
the use of the Floquet theory. We define the Laplace transform, fep), of a function let) by

f(p): J;f(t)e-pt dl. (7)

Fig. J. Geometry of the layered medium.
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After applying the Laplace transform to eqns (2H6), the gtneral solution for the stress and the
velocity in layers I and 2 can be written as

cTl(X,P) =A, cosh (k,x)+ 8, sinh (k1x)

VI(X, p) =J-. {AI sinh (k,x) + 81 cosh (k,x)}
ml

cT2(X, p) =A2cosh (k2x - k2w) + 82 sinh (k2x - k2w)

1--
V2(X, p) = - {A2sinh (k2x - k2w) + B2 cosh (k2x - k2w)}

m2

where

w =h.+h2 )

k; = v'(p;plgj)

mj =p;plkj =v'(p;pgj).

Aj and Bj (; =1,2) are determined by the continuity condition at x =h.

(8a)

(8b)

(8c)

(Sd)

(9)

(10)

and the quasi-periodicity property of the solution together with the continuity condition at
x=2w-h l

(11)

where K is the characteristic exponent[l2]. Substitution of eqns (8) into eqns (10) and (11) leads
to four homogeneous equations for Aj and Bj• The requirement for a non-trivial solution results
in the following equation for the characteristic exponent K:

cosh (2WK) =8 cosh (2k lhl +2k2h2)-(8-I)cosh (2k.h l -2k2h2) (12)

8=!(m2+2+ml
). (13)

4 ml m2

Moreover, Aj and 8j are related by

where

(14)

£. =m.RpM, £2 =m2R!(pM)

pM=m,CIC2+m2SI~= m2 cosh (WK)
m. cosh (WK) m2C,C2+ m.SIS2

pR =m,C.S2+m2C2S. = sinh (WK)
mlm2 sinh (WK) m2C,S2+ m.C2S.

(IS)

Ci =cosh (kjhj), Sj = sinh (kjhj).
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(17a)

Notice that if we interchange the sUbscripts 1and 2, the expression for pR remains unchanged
while pM becomes (pMr l. Therefore, we can obtain the Stieltjes inversion of M(t) by sinply
interchanging the subscripts 1 and 2 in the expression for pM and applying the Laplace inverse
transform.

With eqn (14), the general solution in the layers I and 2 as expressed by eqn (8) can now be
reduced to a solution containing only one coefficient, say AI' The solutions in other layers are
obtained by the quasi-periodicity relation:

[::] (2nw +x, p) =[::] (X, p) e-2- (16)

where n is an integer. Moreover, we see from eqn (12) that if K is a characteristic exponent, so
is -K. Therefore, in addition to the general solution with AI as the coefficient, we obtain the
second general solution by changing the sign of K. The coefficient of this second solution will be
denoted by Ai. Consequently, the general solution for the stress and velocity at any point x in
the layered medium can be written as, using eqns (8), (14), (16),

u,(2nw +Xl> p) =A,{cosh (klx,) - pi. sinh (k.x,)} e-z-

+AHcosh (klxl) +pi, sinh (k,xl)} eZ-

vl(2nw +Xl> p) = AI {sinh (klx,) - pi, cosh (k,x,)} e-z­
ml

At _
+-l{sinh (klx,) +pL, cosh (k,x,)} ez- (17b)

m,

uz(2nw +w+X2, p) =AlpM{cosh (k2xz) - pi,. sinh (kzxz)} e-UII+Il-

+AipM{cosh (k2X2) +pizsinh (k2X2)} e(2I1+1l- (17c)

v2(2nw +w+Xz, p) =AI pM{sinh (kZX2) - pi,. cosh (k2X2)} e-(2lI+1l-
m2

A; - -+- pM{sinh (k2X2) +pLz cosh (k2X2)} e(Ztt+ll- (17d)
mz

where
(18)

When proper values for n and XI (or X2) are chosen, eqns (17) can be used to determine solution
at any point in the layered medium. The two coefficients AI and Ai are determined from the
boundary conditions at X =0 and x =I.

In the next section we will show how one can obtain the solution at the centers of the
layers by solving the wave propagation problem in an "equivalent" homogeneous viscoelastic
medium. Having found the viscoelastic analogy for the solution at the centers of the layers, we
then show how one can obtain the solution at points other than the centers of the layers in
terms of the solution at the centers of the layers.

4. SOLUTION AT CENTERS OF LAYERS

The stress and velocity at the centers of the layers have specially simple forms. By letting
XI = Xz = 0 in eqn (17), we have

uI(2nw,p) = AI e-Z
- +Ai cz­

v.(2nw,p) =fb(_ Al e-z..- +Ai ez..-)
m. .

uz(2nw +w, p) = pM(AI e-(ZII+Il- +Ai e<2ll+Il-)

vz(2nw +w,P)=P!: pM(- Al e-(ZII+Il- +Ai eUII+Il-).

(19)
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We now consider a homogeneous, isotropic, linear viscoelastic medium which occupies
O:s x s I and which is at rest at t == 0- and is subjected to certain prescribed boundary
conditions at x == 0 and X"" I. Let iP, 11 and V be the normal stress, normal strain and particle
velocity, respectively. Also,let p and 0 be the "equivalent" mass density and the "equivalent"
relaxation function of this homogeneous viscoelastic material. The equation of motion, the
continuity condition, the stress-strain relation and the initial conditions are

aiP .
-==pVax
oV .
ax := 11

iP(x, t) == L~ G(t - t ') dl1(X, t')

iP(x, 0-) == vex, 0-) == l1(X, 0-) == o.

(20)

By applying the Laplace transform to eqns (20), the general solution for the stress and velocity
will contain the exponential term

exp (± v'(pp/G)x). (21)

In view of the exponential terms in eqns (19), we will define the "equivalent" relaxation
function O(t) by the relation

K =v'(pp/G). (22)

We will also define the "equivalent" mass density p by the average mass density in the layered
medium{4,8];

(23)

With eqn (22), the general solution to eqn (20) can be written as

(248)

(24b)

where a and a' are arbitrary functions of p.
There are several ways to identify the analogy between eqns (19) and (24). If the stress in

material 1 is of main interest, we may set

we then have

and

SS Vol. 16. No. 3-D

O',(x, p) "" cI>(x, P)} for x "" 2nw
VI(X, p} == pi, vex, p}

0'2(X, p) "" p,Mi(x, p) }
v,<x, p) "" pM{PJ;vex, p)} for x == (2n + l)w

(25)

(26a)

(26b)
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- - PP[jli--, (i= 1,2).
Kmi

(27)

It should be pointed out that while 4> and Vas given by eqn (24) are defined for all x, eqns (200)
and (26b) apply only to x =2nw and x =(2n + l)w, respectively. By using the identity,

the last of eqn (26b) can be written as

1 - -
V2(X, p) =pM {Pl. Vex, p)}, x =(2n + l)w.

With eqn (29), we rewrite eqns (26) in the following form:

0'.(2nw, t) = cIl(2nw, t)

v.(2nw, I) =V*(2nw, I)

0'2C2nw + w, I) =1/ M(t - t') d<l>(2nw + w, I')
0-

v2(2nw +w, t) =l' M-'(I - t') dV*(2nw +w, I')
0-

where

V*(x, t) =f ll(t - t') dvex, tt)

(28)

(29)

(30a)

(30b)

(30e)

(lOd)

(3Oe)

and M- l is the Stieltjes inverse of M. (See the discussion following eqn (15) regarding the
Stieltjes inverse of M.) Thus the stress and velocity at the centers of the layers are related to
the stress <I> and velocity V in the "equivalent" homogeneous medium. In particular, the stress
at the centers of the odd layers, 0'.(2w, I), is identical to the stress <I> in the "equivalent"
homogeneous viscoelastic medium.

As an iIIust,ration for the theory of viscoelastic analogy, we consider an elastic layered
medium which is fixed at the center of the 14th layer (i.e. 1= 13w) and subjected to a unit step
stress applied at x =O. Since the 14th layer is occupied by material 2, we have the folllowing
boundary conditions:

0'1(0, t) = H(/), (31a)

where H(t) is the Heaviside step function. In view of eqns (30), the corresponding boundary
conditions for the "equivalent" viscoelastic medium are:

<1>(0, t) =H(t), V(13w, I) =O. (3Ib)

We now replace the elastic layered medium by the "equivalent" homogeneous viscoelastic
medium whose mass density p and the relaxation function G(/) are given by eqns (23) and (22).
Because of the complicated expression for K as given by eqn (12), analytical inversion of the
Laplace transform O(P) from eqn (22) does not appear feasible. We therefore resort to a
numerical Laplace inversion of 0(P)[13). The result is shown in Fig. 2 along with the physical
parameters of the elastic layered medium used in the calculation. The physical parameters are
taken from [4]. Unlike for most real viscoelastic materials, the relaxation function for the
"equivalent" viscoelastic medium is not a monotonically decreasing function of t. This was also
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Hg. 2. "Equivalent" viscoelastic relaxation function O(t).

predicted by Christensen[lO] based on the dielectric theory. In [8] one can find a discussion on
the behavior of 0(1) as 1-.0 and 1-.00 as well as the value of G(t) at 1=O.

With 0(1) given by Fig. 2 and the boundary conditions given by eqn (3Ib), we integrate eqn
(20) numerically by the method of characteristics[14] for the stress cI> and velocity V in the
"equivalent" homogeneous viscoelastic medium. The stress and velocity at the centers of the
layers in the layered medium are then determined by using the viscoelastic analogy eqns (30). In
Fag. 3 we present 4>(4w, I) which is the stress history at the center of the 5th layer. For this
example, the exact solution in the elastic layered medium using the ray theory can be obtained
numerically by keeping track of every reflected and transmitted waves at the interfaces of the
layers[8]. This exact solution is also shown in Fig. 3 for comparison. It is seen that the
agreement is excellent.

In Fig. 3 we also show the solution obtained by the effective modulus theory[15]. With this
theory, the elastic layered medium is replaced by a homogeneous elastic medium whose
effective modulus gef! is given by

(32)

and whose effective mass density is identical to the "equivalent" mass density defined in eqn
(23).

In Figs. 4 and 5 we show, respectively, the velocity history at the center of the 5th layer and
the stress history at the center of the 8th layer by using eqns (30b) and (3Oc). Since cI>(x, I) and
V(x, I) have already been determined, all we need is the functions J1(1) and M(I) which are
defined in eqns (27) and (15). !t(1) and M(I) are obtained numerically by inverting their Laplace
transforms. Again, the solutions by the ray theory and the effective modulus theory are also
shown in the figures for comparison.

2~ ~acOELA8T~

E ANALOGY

I
:1.0
!

EFFECTIVE MODULU8 THEORY
O.O+-....I..l_-..,.--.....-_.......-_-~- ......----4
~ u u U 1~

TIME. TC~O SEC)

Hg. 3. Stress at the center of the 5th layer due to a unit step stress applied at the center of the first layer
while the center of the 14th layer is fixed.
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Fig. 4. Velocity at the center of the 5th layer due to a unit step stress applied at the center of the first layer
while the center of the 14th layer is fixed.

The function 1; as well as functions M, R and ~, (i =1,2) defined in eqn (IS) are called the
"auxiliary" functions. Like 0(1), the auxiliary functions depend only on the physical properties
and the geomebical layering of the layered medium. They are independent of the boundary
conditions. For the viscoelastic analogy given by eqns (30), only the functions lit M and M-1

are needed. Of course, if 0'1(2(1), I) is the only quantity desired, no auxiliary functions are
needed.

Before we study the solution at points other than the centers of the layers, we will discuss other
forms of viscoelastic analogy in the next section.

5. OTHER FORMS OF VISCOELASTIC ANALOGY

In eqns (30) we present one form of viscoelastic analogy between eqns (9) and (24). The
analogy, eqns (30), is convenient for the case when the stress in material 1 is of main interest
because according to eqn (3Oa) 0'1 is identical to ell. If the stress in material 2 is of main interest,
then the analogy given by eqn (30e) requires a convolution integral with the auxiliary function
M(I).

There are of course other forms of viscoelastic analogy which would be more convenient
for other situations. If the stress in material 2 is of main interest, one may set

PMAI=a}
pMAj =ti' . (33)

2.0 VISCOELASTIC

ANALOGY

EFFECTIVE MODULUS THEORY

10.02.a a.o 7.15
TIME. T«MICRO SECI

0.0+--..e-"--..,--_--r--......- ......-_--4
0.0

Fig. 5. Stress at the center of the 8th layer due to a unit step stress applied at the center of the first layer
while the center of the 14th layer is fixed.
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Then the analogy between eqns (19) and (24) can be written as

0"2(2nw +w, I) = <I>(2nw +w, t)

v2(2nw +w, I) =V*(2nw +w, I)

0"1(2nw, I) = (' M-'(t - I') d<l>(2nw, I')10-

vl(2nw, I) =LM(I - I') dV*(2nw, I')

V*(x, t) = LJ2(t - I') dV(x, I').

247

(34)

With this analogy, the stress <I> in the "equivalent" viscoelastic medium is identical to 0"2 at
x =(2n + l)w.

Ukewise, if the velocity in material 1 is of main interest, the viscoelastic analogy can be
written as

vl(2nw, I) =V(2nw, I)

0".(2nw, I) =<I>*(2nw, I)

v2(2nw + w, I) = (' M-1(1 - I') dV(2nw +w, I')10-

0"2(2nw +w, I) =LM(t - I') d<l>*(2nw +w, n

<I>*(x, I) = (' J1-1(1 - I') d<l>(x, I').10-

Finally, if the velocity in material 2 is of main interest, we can write

v2(2nw +w, I) =V(2nw +w,l)

0"2(2nw + w, I) =<I>*(2nw +w, I)

v\(2nw, I) =L~ M(I - I') dV(2nw, I')

0".(2nw, I) = (' M-1(1 - I') d<l>*(2nw, I')10-

<I>*(x, t) = (' J2-\(t - t') d<l>(x, t').10-

(35)

(36)

Sometimes the boundary conditions may influence the choice of a viscoelastic analogy. For
example, supPose that one is interested in the stress in material 1 for the problem in which the
velocity is prescribed at x =0 (i.e. 0\(0, t) is known), and the other boundary x =I is fixed. We
could use either the analogy eqns (30) or the analogy eqns (35). If we use eqns (30), we obtain
0", directly from <I> but then we have to transform the boundary condition 0\(0, t) to V(O, t) by
using eqns (30b) and (JOe),

V(O, t) = (' J.-1(t - t') dVI(O, t')Jo- (37)

before we solve for <I> and V in the "equivalent" homogeneous viscoelastic medium. If we use
eqns (35), we can solve for <I> and V immediately since V(O, t) =v\(O, t), but to obtain 0"\ from
<I> a convolution integral is required.
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6. SOLUTION AT ARBITRARY POINTS

If we solve for AI and A; from the first two equations of eqns (19) and substitute the results
into eqns (17a) and (17b), we have

ul(2nw +x" p) = ~ (e k1x1 +e-kIX1)ul(2nw, p)

vl(2nw +XI, p) = ~ (eklX1 +e-k1x1)vl(2nw, p)

+-21(eklX1 _ e-k1x1) ..lul(2nw, p).
ml

(38a)

(38b)

Similar results can be obtained for u2(2nw +w +X2, p) and v2(2nw +w +X2, p).
We will define the Laplace transform of the functions DI(x" t), E.(x" t) and FI(Xh t) by

D- ( ) 1 -k X
I XhP =pe I I

E- ( ) 1 -k XI
I x"p =pml e I

(39)

FI(XhP) = ml e-kIXI .
P

Dh EI and F I have the following physical interpretation. Suppose that material 1occupies the
semi-infinite space x ~ 0 and is initially at rest. Then DI(Xh t) and EI(Xh t) are, respectively, the
stress and velocity history at x =XI due to a unit step normal stress applied at x =O. F1(x" t) is
the stress history at x =XI due to a unit step velocity applied at x =O. We now rewrite eqn (38a)
as

where

+~ {v.(2nw, p) epl1/c'O}p{FI(-Xh p) e-pxl/cIO}

-! {vl(2nw, p) e-PXI/CIO}p{FI(Xh p) ePxl/clO}

C/O =V(gj(O)/Pi), (; =1,2)

(40)

(41)

and DI(-Xh t) is obtained from DI(Xh I) by analytically extrapolating the later from XI >0 to
XI <0. Similar definition applies to F.( - x.. I). Equation (40) can now be inverted as

ul(2nw +x.. I) =-2
1 1' UI (2nw, t +.ti._ t l

) dD. (-x.. I' _ XL\
0- CIO CI;)

(42)
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Equation (42) can be written in a compact form if we observe that 0'.(2nw, t) and v.(2nw, t)
vanish for t < 0, and D.(±x.. t) and F.(±x.. t) vanish for t < ±X.lCIO and that -h. :s x. :s h. by
eqn (18). We have

0'1(2nw +x.. t) = ~ (' 0'1(2nw, t - t') d{D1(-x.. t
f
)+ DI(x.. t

f
)}

J (-ItIICIO)-

+~ (' vI(2nw, t - tf)d{F.(-x.. t')- F.(x.. tf)}.
J(-ItIICIOl-

By a similar argument, we obtain from eqn (38b),

(43a)

vI(2I1W +x.. t) =-2
1

(' V.(2l1w, t - t
f
)d{DJ(-x.. t') +D1(x.. t

f
)}

J(-ItIICIOl-

+-2
1

(' 0'.(2nw, t - t
f
)d{E.(-x.. t') - E.(x.. t')}. (43b)

J (-It.lclol-

When material 1 is elastic, m. is a constant and D.. E. and F. are step functions:

D1(±x.. t) =H (t+ :10

E1(±x.. t) =.!. H (t + XI..'
m. CI;,)

Equations (43) then reduce to (when material 1 is elastic)

0'1(2nw +x.. t) = ~ { 0'1 (211W, 1+:.0 +0'. (2nw, 1- :II~}

+~I {V. (2nw, t+ :.1) - VI (2I1w,t- :10}
vl(2nw +x.. I) =~{v. (2nw, t + :.~) +VI (2I1W, 1- :I~)}

+_1_ {O'I (2I1W, t +.!!.) - 0'1 (2nw, t _ xI..'}.
2m. CIO CI;,}

(44)

(45a)

(45b)

This is nothing more than the familiar characteristic relation for one-dimensional waves in a
homogeneous elastic medium. As such, eqn (43) may be regarded as the characteristic relation
in an integral form for one-dimensional waves in a homogeneous viscoelastic medium.

After finding the stress and velocity at the center of the 5th layer in Figs. 3 and 4, we use
eqn (45a) to find the stress history at the interface between the 4th and the 5th layers by letting
II =4 and XI =-h.. The result is shown in Fig. 6 along with the exact solution by the ray theory.

7. DISCUSSION AND CONCLUDING REMARKS

Several analogies between the solutions of transient waves in a finite layered medium and in
a finite homogeneous viscoelastic medium are established. The analoaies between the solutions
apply to the centers of the alternate layers in the layered medium. Solutions at points other than
the centers of the alternate layers are obtained in terms of the solutions at the centers of the
alternate layers through the use of convolution integrals with auxiliary functions introduced in
the paper. The materials in the individual layer of the layered medium can be elastic or
viscoelastic, although numerical examples are given for an elastic layered medium.
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FII. 6. Stress at the interface between the 4th and 5th layers due to a unit step stress applied at the center of
the first layer while the center of the 14th layer is fixed.

The viscoelastic analogies derived here lead us to an exact expression O(P), which is the
Laplace transform of the relaxation function G(t) for the "equivalent" homogeneous visco­
elastic medium. The relaxation function G(t) is obtained by numerically inverting its Laplace
transform using the method outlined in [13, 14). The method used in [13, 14) tends to provide the
value of G(t) only at a finite number of t's which are close to t =O. It provides poor
information on G(t) for large I. Fortunately, our relaxation function approaches rapidly to the
equilibrium relaxation modulus G. so that the inversion obtained by the method in [13,14] is
adequate for most cases. One could certainly obtain a better numerical inversion of a Laplace
transform by using other tehcniques such as the fast Fourier transform[16].

Even thoUgh the relaxation function G(I) obtained here is quite crude, we have reached an
excellent agreement between the solutions by the viscoelastic analogy and by the exact ray
theory. The differences in the solutions are caused mainly from the numerical Laplace inversion
of the relaxation function O(P) and the auxiliary functions M(P) and J1(P). For those solutions
which require no auxiliary functions, the differences in the solutions are less noticeable. Some
of the auxiliary functions, namely, M, R, L1 and ~ defined in eqn (IS) can be determined
exactly when the constituents of the layered medium are elastic. With the use of exact auxiliary
functions, the differences between the solutions by the viscoelastic analogy and by the ray
theory can be made smaller[14].

One might ask the relative advantages of the viscoelastic analogy over a direct numerical
computation of the original layered problem. In a direct computation of waves in the original
layered medium, the calculations are feasible when the boundary conditions are constant in
time and the individual layers are elastic. Moreover, keeping track of every reflection and
transmission of waves at the interfaces between the layers may soon exhaust the storage
capacity of the computor, not to mention the computing time. The situation is particularly acute
when there are a large number of layers involved as in a real composite. These shortcomings
are not present in the theory of viscoelastic analogy. One possible shortcoming of the theory of
viscoelastic analogy approach is the less accurate result for the solution at points other than the
centers of the layers. This shortcoming is not serious in practical applications when the
individual layers are very thin such that the solution at the center of a layer and at other points
in the layer are practically the same.

In connection with the present work on transient waves in a finite layered medium, we
would like to point out that harmonic waves in a finite layered medium has been considered by
Herrmann, Beaupre and Auld [17]. In contrast to the normal stress waves studied here, the
harmonic waves considered in [17] are horizontally polarized shear waves. However, one can
see from the analyses presented here that if we replace the normal stress and the normal
displacement by the shear stress and the transverse displacement, respectively, the analyses
presented here apply to the transient shear waves in finite layered media as well.
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